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We consider the flow of a rarefied gas in the presence of attractive surface 
forces. It is shown that when the channel thickness is close to the range of 
the surface forces the gas flow is described by an equation which differs from 
the formula for free-molecular flow. 

The average flux density (i = Q/~r~) of a rarefied gas through a circular channel in 
the assumption of diffuse scattering of molecules by the walls is given by the Knudsen for- 
mula [I] 

Ap ro L ~ro. (1) 

The ana logous  formula  f o r  a p l ane  channe l  ( i  = Q/d) i s  

hp d In 2V~L L ~ d. (2)  
i:= -V2~mkT L d 

Equations (I) and (2) are valid when the transverse dimensions of the channel are much smaller 
than the mean free path of a molecule in the gas: 

~o>ro,  Z o ~ d .  (3)  

Deviations form (i) were observed experimentally in [2] for channels with very small 
transverse dimensions (r 0 ~ 0.5 Dm). In such channels i no longer depends on r 0. Evidently 
this qualitative change in the nature of the flow is caused by the increased importance of 
the interaction of the gas with the walls, since in this case the range of the surface forces 
covers a significant fraction of the channel volume. A qualitative explanation of the result 
was given in [2] assuming that the scattering of gas molecules by the walls is described by 
the diffusely specular Maxwell model [i], and that the coefficient of accommodation vanishes 
for angles below a certain very small value. In addition, it was assumed that diffusely scat- 
tered molecules are not incident at such small angles. In [3, 4] the linear response method 
was used together with a numerical calculations to show that when the dimensions of the chan- 
nel are decreased down to the range of the molecular interactions (-3-5 ~) the diffusion co- 
efficient of the gas increases anomalously. The effect of nonequilibrium phonons in the chan- 
nel walls on the gas flow was studied in [5, 6]. However, long-range dispersion forces were 
not taken into acocunt. The effects of adsorption and surface mobility on gas flow were 
studied in [7]. It was shown that in thin capillaries surface flow begins to play a major 
role and the flow deviates from Knudsen flow. 

In the present paper we consider the effect of long-range surface attraction on the flow 
of a rarefied gas in a thin plane surface attraction on the flow of a rarefied gas in a thin 

plane channel. The treatment is based on the use of the Boltzmann equation and the assump- 
tion of diffuse scattering. The interaction potential of gas molecules with the walls is 
Chosen as a rectangular well [8] 

U (x, !j, z ) =  ~ {0, d l ~ z ~ d - - d l ,  
�9 l - -U0 ,  O~:z~dl ,  d - - d t , ~ z ~ d ,  

(4) 
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Types of trajectories of molecules arriving at a given 
z = O) of the channel wall. 

Dependence of the flux Q on channel thickness d (solid 
I) without attractive forces; II) with attractive 

(QI = ~pd ~ In (t'l/~dl)/Ll"2~--m-ff'r, Q2= Q, exp (Uo/hT)) . 

here z is the coordinate perpendicular to the walls, y is the coordinate along the gas flow, 
and x is perpendicular to the gas flow in the plane of the walls. This rather crude model 
for the long-range attractive forces can only be used when the potentials of the opposing walls 
do not overlap. This means that: all of the results obtained here are valid only when ~ > 2d i. 

The collisionless Boltzmann equation describing the rarefied gas has for its solution a 
distribution function which is invariant along the trajectories of motion between collLsions 
with the walls [i]. For example, in the absence of interactions 

f (r, v, 0 = f (r -- v (t -- to), v, re). (5 )  
We consider steady flow. Following [I, 9] we consider the Boltzmann equation subject ~:o a 
boundary condition of the form 

rvnl/+(r, v ) =  [ dv'W(v'--.,-v)Jv'nff-(r, v'), (vn)>O,  (6 )  
(v'n)<O 

where the point r lies in the channel wall. 

For diffuse scattering [I] 

17!9- (' ITtu ) 
W ( v ' ~ v ) = l v n i W o ( v ) ,  We(v)-- 2~(kT) z exp - - ~ 2 k T  " ( 7 )  

Then from (6) and (7) we obtain 

where 

f§ (r, v) = J (r) We (v), (8) 

J ( r ) =  I dv ' l v ' n ] i - ( r ,  v'). (9) 
(v'.~<o 

Hence the problem reduces to the calculation of the function 7(r). 

For a plane channel with identical walls the integral in (6) splits up into six in:egrals 
corresponding to the six types of trajectories along which a molecule can arrive at a gLven 
point y of the surface (Fig. i)~ 

Here for simplicity we assume that there is no gas at the right end of the channel Along 
trajectories I-IV molecules arrive at point y directly form the end of the channel (y = 0) 
without collision with the walls. Using the invariance of the distribution along the trajec- 
tories, the function fT-Iv (Y, v') can be expressed in terms of the given boundary distribu- 
tion f0(z, v) at the end of the channel. For example, we have for trajectories of type ]II 
[8] 

fTb (V, v') = / o  (z~, v), 

where 

z~ = d~ (1 - -  -V ! _ 2Uolnzv~ ~) + U -1/v~ 2 __ 2Uo!m /v~,  
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and the transformation of s z-component of the velocity v~---~-Vvs corresponds to 
passing through the boundary of the potential well z = d i. 

Along the trajectories V and VIa molecule arrives at point y on the wall after colliding 
with the walls of the channel and hence f- can be expressed in terms of the distribution f+ 
and therefore J(y), in view of (8). In particular 

f~ (~, v') = f %  (u. v'), 
where 

(d - -  2di) vu 
, v~ 2 > 2Ujm. gl = Y -t- 2d~ @/vs - -  ] I / v ;  ~ _ _  2Uo/m 

E x p r e s s i n g  t h e  f u n c t i o n  [-(g,  v') t h r o u g h  fo(z, v) in  e ach  o f  t h e  s i x  r e g i o n s  o f  i n t e g r a t i o n  
composing  t h e  r e g i o n  v z '  < O in  ( 9 ) ,  and u s i n g  ( 8 ) ,  we o b t a i n  an i n t e g r a l  e q u a t i o n  f o r  J ( y ) :  

L 

J (Y) = J0 (g) + ~ g (Y - -  Y') J (Y') d9'. ( 10 ) 
0 

Here  t h e  t e r m  J0(Y) i s  due t o  t h e  c o n t r i b u t i o n  o f  t r a j e c t o r i e s  o f  t y p e s ! - I V ,  whe reas  t h e  
i n t e g r a l  t e r m  i s  due t o  t h e  c o n t r i b u t i o n  o f  t r a j e c t o r i e s  o f  t y p e s  V and VI.  In  d e r i v i n g  (10)  
t h e  d i s t r i b u t i o n  f u n c t i o n  f0(z, v) was c h o s e n  t o  be a Maxwel l -Bo l t zmann  d i s t r i b u t i o n .  The 
e x p r e s s i o n s  f o r  J0(Y)  and t h e  k e r n e l  K(y - y ' )  a r e  q u i t e  c o m p l i c a t e d  and w i l l  n o t  be w r i t t e n  
ou t  h e r e .  

E q u a t i o n s  o f  t h e  t y p e  (10)  have  been  s t u d i e d  in  d e t a i l  in  [ 1 ] .  For  a long  c h a n n e l  
(L >> d) t h e  a p p r o x i m a t e  s o l u t i o n  has  t h e  form [1] 

P ,exp ( U~ ) ( 1 - - y / L ) ,  (11)  

where  p i s  t h e  p r e s s u r e  in  t h e  volume f rom w h i c h t h e  gas  f l o w s  i n t o  t h e  c h a n n e l .  E q u a t i o n s  
(11)  and (8)  and t h e  i n v a r i a n c e  c o n d i t i o n  a l o n g  t h e  t r a j e c t o r i e s  g i v e  t h e  c o m p l e t e  s o l u t i o n  
o f  t h e  p r ob l e m f o r  gas f l ow  in  a t h i n  p l a n e  c h a n n e l  w i t h  t h e  e f f e c t  o f  l o n g - r a n g e  a t t r a c t i v e  
f o r c e s  t a k e n  i n t o  a c c o u n t .  

In  o r d e r  t o  compare  w i t h  e x p e r i m e n t s  we c a l c u l a t e  t h e  f l u x  o f  gas  Q d i s c h a r g e d  f rom t h e  
c h a n n e l .  The q u a n t i t y  Q f o r  a c h a n n e l  o f  a r b i t r a r y  l e n g t h  can be w r i t t e n  in  t h e  fo rm [ 1 ] :  

L 

q =Qi. + 1 'd" ( Iv.nj?( , v)dv, (12) 

Qin is the contribution to the flux of molecules passing through the entire channel without 
making collisions with the walls and is determined by the distribution function f0(z, v) at 
the entrance to the channel. The calculation shows that in a long channel (L >> d) the quantity 
Qin becomes logarithmically small in comparison with the in integral term in (12). This is 
natural, since the probability of a molecules passing through the entire channel without mak- 
ing a collision with the wall is extremely small in this case. The integral term on the right 
hand side of (12) represents the contribution to the flux Q from molecules reflected from 
the walls of the channel. The region of integration ~+(y) in velocity space v, is determined 
by the condition v6Q+(y), if a molecule reflected from the wall at point y with velocity 
reaches the channel outlet without colliding with the walls. The set of all trajectories 
satisfying this condition splits up into four types: I+-IV +, which are analogous to the tra- 

jectories I-IV in Fig. I, but are directed toward the channel outlet. Carrying out the inte- 
grations over these subregions, the quantity Q can be reduced to quadratures. However, this 
expression is quite complicated; simple analytical expressions can be obtained in two limiting 
cases: 

Uo/kT << 1, 

P g 2 2 J / e L  . 

Q ~ 3/~---hT~kT 2L In ~ , (13) 

_L VUo/,~7 >) 1, a 

p [ (d --  2d,)~ 1~ 2V~-L + 

6 2 0  



~- L exp 2 - - ~  K0 - ~  - ~ T e x p  In d~ ]"  

We see from (13) and (14) t h a t  in a wide channel  (d >> 2de) the  a t t r a c t i v e  f o r c e s  a f f e c t  the  
f low only  s l i g h t l y .  In a t h in  channel  (d ~ 2d2) the  a t t r a c t i v e  s u r f a c e  f o r c e s  s i g n i f i c a n t l y  
change the  na tu re  of  the  f low and the  e f f e c t  i s  l a r g e r  the  deeper  the  p o t e n t i a l  we l l  (Fig . ,  
2). This result is qualitatively consistent with the experimental results [2]. The inclu- 
sion of long-range forces leads to another condition for the applicability of the free-molecu- 
lar approximation: a restriction on the depth of the potential well. As a result of the 
Boltzmann distribution, the density of gas is higher inside the potential well than outside 
of it, and therefore the mean free path ~ insider the well is smaller than that X0 outside 
of it. Because ~ ~ i/n [i0], we have 

= Z0 exp (-- Uo/kT). (15) 

Therefore the condition (3) transforms into two inequalities: 

k0 ~ d - -  2d~, %o exp (-- Uo/kT) ~ d:~, (16) 

which restricts the potential well depth. The opposite case, when the second inequality in 
(16) is not satisfied and the surface motion can be considered as hydrodynamic, was ccnsid- 
ered in detail in [7]. In order to obtain a more accurate comparison with experiment, it 
is necessary to consider gas flow in a thin circular channel and to take into account the 
nonequilibrium nature of the interaction of the gas with the walls [5, 6, ii]. It may also 
be necessary to consider a more realistic model of the potential of the dispersion. 

NOTATION 

d, thickness of the plane channel: dl, potential well width; e, base of naturel loga- 
rithms; /(r,v,t) , distribution function of the gas; f0(z,v) , boundary value of the distribution 
function at the end of the channel; f- and f+, distribution functions of molecules incident 
on the surface and scattered molecules; i, flux density of the gas; k, Boltzmann constant; 
L, channel length; m, mass of a gas molecule; n outward normal to the surface; p, gas pres- 
sure; Ap, pressure drop; Q, gas flux at the channel outlet; r, position vector; r 0, radius 
of the circular channel; T, temperature; t, time; U 0, potential well depth; v'. and v, veloc- 
ity of a molecule incident on the wall and scattered from the wall; l~Iv'~v) , scattering func- 
tion of the gas; x, y, z, Cartesian coordinates; l 0, mean free path of a molecule outside 
the range of the surface forces; X, mean free path inside the potential well. 

LITERATURE CITED 

i. K. Cherchin'yani, Theory and Application of the Boltzmann Equation [in Russian], Mcscow 

(1978). 
2. B. V. Deryagin and N. N. Fedyakin, Studies of Surfaces Forces [in Russian], Moscow 

(1964); pp. 244-257. 
3. L. A. Grivtsova, A. G. Grivtsov, N. V. Churaev, and L. F. Chuikova, Kolloidn. Zh., 44, 

No. 5, 969-976 (1982). 
4. L. A. Grivtsova, R. M. Ergunov, N. V. Churaev, and L. G. Khazin, "On the diffusion of 

gas molecules in microcapillaries with discrete adsorption centers," Preprint IPM %N 
SSSR, No. 136, Moscow (1984). 

5. D. V. Borman, S. Yu. Krylov, and A. M. Kharitonov, Pis'ma Zh. Eksp. Teor. Fiz., 1_!1, No. 

7, 430-434 (1985). 
6. D. V. Borman, S. Yu. Krylov, and A. M. Kharitonov, Zh. Eksp. Teor. Fiz., 92, No. 5 

1668-1683 (1987). 
7. N. V. Pavlyukevich, G. E. Gorelik, V. V. Levdanskii, et el., Physical Kinetics and Trans- 

port Processes in the Presence of Phase Transitions [in Russian], Minsk (1980). 
8. J. A. Barker and D. J. Auerbach, Far. Disc. Chem. Soc., No. 80, 277-289 (1985). 
9. R. G. Barantsev, Interaction of Rarefied Gases with Streamlined Surfaces [in Russian], 

Moscow (1975). 
i0. A. Isikhara, Statistical Physics [in Russian], Moscow (1973)o 
ii. F. O. Goodman and H. Y. Wachman, Dynamics of Gas-Surface Scattering, Academic Press, 

New York (1976). 

621 


